Технология металлов и материаловедение






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Технология металлов и материаловедение

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 89 90 91 92 93 94 95... 398 399 400
 

образующегося мартенсита больше объема исходного аустенита, поэтому в процессе роста новой фазы возрастает значение упругой энергии до тех пор, пока не будет превзойден предел упругости в переходной зоне. После этого Б ней произойдет пластическая деформация (сдвиг), нарушится сопряженность кристаллов, прекратится рост кристалла мартенсита (в этих условиях невозможно кооперативное направленное смещение атомов). Кристаллическая решетка образующегося мартенсита закономерно ориентирована по отношению к решетке аустенита. В процессе роста мартенситного кристалла на границе между ним и аустенитом имеется непрерывный переход от решетки аустенита к решетке мартенсита, т. е. имеется когерентность (упругая связь) двух решеток (рис. ПЗ). При когерентном росте новой фазы атомы перемещаются только на небольшие близкие расстояния. Это означает, что соседи любого атома в исходной фазе остаются соседями этого же атома в новой фазе. Поверхностная энергия при таком росте очень мала. В результате — низкое значение энергии активации, а линейная скорость роста новой фазы должна быть очень большой. Это подтверждается экспериментально. Энергия активации такого процесса составляет 4200 кал/г-атом, а скорость роста кристалла мартенсита примерно 1000 м/с. Он образуется практически мгновенно (за 10-' с). Итак, вторая особенность мартенситного превращения — ориентированность кристаллов мартенсита. Ориентированное смещение атомов при мартенситном превращении приводит даже к образованию на полированной поверхности рельефа. Как показано экспериментально А. П. Гуляевым, кристаллы мартенсита имеют форму пластин. В плоскости шлифа видны обычно их сечения, поэтому мартенситная структура под микроскопом выглядит как игольчатая (рис. 114, а). Образуясь мгновенно (со скоростью взрыва), пластины мартенсита растут либо до границы зерна аустенита, либо до дефекта. Возникающие следующие мартенситные пластины расположены к первым под углами 60 или 120° и размеры их ограничены участками между первыми пластинами *. Чем крупнее исходное зерно аустенита, тем крупнее и пластинки мартенсита, т. е. он будет грубоигольча-тым (рис. 114, б, в). Третья особенность мартенситного превращения — оно происходит только при непрерывном охлаждении, т. е. в интервале температур, начинаясь и заканчиваясь для каждой стали при определенной температуре независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой и обозначают М^, а т е м ^ В этой закономерной ориентировке проявляется принцип структурного соответствия между образующимся мартенситом и исходной фазой — аустенитом. реечный мартенсит ф)\ ^То ооО '"^Р'^^'"^'"' ^) Х^ОО; 185 184
rss
Карта
 






Страницы: 1 2 3... 89 90 91 92 93 94 95... 398 399 400

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Диффузионная сварка разнородных материалов: учеб. пособие для студ. высш. учеб. заведений
Сварка в среде защитных газов плавящимся и неплавящимся электродом (Рекомендации для «чайников»)
Технология металлов и конструкционные материалы: Учебник для машиностроительных техникумов
Технология металлов и материаловедение
Клеи и герметики
Конструкционные материалы металлы, сплавы, полимеры, керамика, композиты Карманный справочник
Электрошлаковый переплав

rss
Карта