вязкость соединения (на образцах с надрезом в плоскости стыка) была значительно ниже, чем у основного металла (соответственно 4,4 и 7,4 кГм/см2) [41 ] . Существенно, что низкая ударная вязкость связана не с какими-либо дефектами самого соединения, а с отмеченным выше искривлением волокон, так как при смещении надреза из плоскости стыка на 1,5—2 мм еще наблюдается заметное понижение показателей ударной вязкости как до, так и после термической обработки стыка, полностью снимающей эффект ох-рупчивания, возможный в результате подкалки во время сварки.Большое значение имеет вопрос о влиянии параметров процесса трения на условия формирования и качество соединения. Простейшее представление о сварке трением как о процессе, состоящем из двух этапов — собственно трения, в задачу которого входит только нагрев свариваемых деталей с получением требуемого температурного поля, и проковки, обеспечивающей образование соединения, противоречит ряду экспериментально установленных факторов. Роль трения в формировании соединения особенно резко выявляется при сварке разноименных металлов, например, алюминия со сталью. Получение соединения в этом случае возможно только при относительно небольшой скорости скольжения, когда процесс идет с глубинным вырыванием и сопровождается «намазыванием» алюминия на относительно твердую сталь практически без образования хрупкой интерметаллидной прослойки. При проковке, по существу, происходит сварка алюминия с алюминием. При большой скорости скольжения процесс, по-видимому, переходит в режим полирования с нагревом поверхностного слоя алюминия до температуры плавления. Это сопровождается растворением алюминия в стали и образованием интерметаллидной прослойки, препятствующей формированию прочного соединения. При сварке трением разноименных металлов с резко отличающимися механическими свойствами большая скорость скольжения может неблагоприятно влиять на процесс еще и подругой причине. При нагреве трением таких металлов один из них будет сильно деформироваться под действием осевого усилия, а другой может практически не изменять свою форму. Вследствие неизбежного биения трущихся торцов даже после механической обработки торца детали из более твердого металла непосредственно в сварочной машине в процессе трения поверхность детали из мягкого металла должна при каждом обороте шпинделя передеформироваться. При большой скорости скольжения такое передеформирование затрудняется и возможно нарушение равномерности нагрева по периметру трущихся торцов. Из изложенного следует, что по своей природе сварка трением среди других процессов сварки давлением наиболее близка к контактной сварке оплавлением; если при трении очистка и обновление соединяемых поверхностей идет за счет образования и разрушения дискретных фрикционных связей с местными всплесками 290 температуры до точки плавления, то при оплавлении эти же процессы являются результатом возникновения и взрыва отдельных перемычек жидкого металла. В обоих случаях недостаточно быстрое доведение нагретых торцов до состояния физического контакта (медленная осадка, проковка с малой пластической деформацией) ведет к появлению в стыках окислов и непроваров (если нет защитной атмосферы). Однако эти процессы имеют и принципиальные отличия. Главное из них состоит в том, что сварка трением может завершаться в твердом состоянии, в то время как сварка оплавлением по самой своей природе обязательно требует нагрева до температуры, лежащей выше Тпл обоих металлов. В частности, поэтому при сварке трением легче предупредить образование хрупких интерметаллидных прослоек и получить прочное соединение разноименных металлов. § 4. УЛЬТРАЗВУКОВАЯ СВАРКА Простейшая схема ультразвуковой сварки металлов представлена на рис. 187, а. Свариваемые детали 4 помещают на массивной опоре 5. Наконечник 6 рабочего инструмента 3 соединен с двигателем магнитострикционного преобразователя / через трансформатор 2 продольных упругих колебаний, представляющий вместе с рабочим инструментом волновод. При включении преобразователя в цепь высокочастотного генератора (обычно 18—30 кгц) создающееся в нем переменное магнитное поле приводит к периодическому удлинению и укорочению сердечника. Продольные упругие колебания усиливаются в волноводе и через наконечник 6 передаются в свариваемые детали в виде сдвиговых колебаний. Амплитуда этих колебаний обычно не превышает20—30мкм. Ее максимальное значение ограничивается усталостной прочностью материала волновода, Рис. 187. Схемы ультразвуковой сварки металлов: — инструментом, совершающим продольные колебания; б — инструментом, нагруженным присоединенной массой и совершающим нзгибные колебания
Карта
|
|