Инструментальные стали и их термическая обработка
Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо
Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .
Страницы: 1 2 3... 267 268 269 270 271 272 273... 311 312 313
|
|
|
|
баг, fi.'MM^ 1Ш поо woo J8W[l?i0l(6g-tS0U) JOe----19001 кости (см. рис. 21). Если инструмент продолжительное время работает при повышенных температурах, то не стоит добиваться наибольших значений прочности инструментальной стали, так как в процессе работы это значение все равно будет снижаться. Теплостойкость стали марки W3, которая в результате термической обработки обладает высоким временным сопротивлением на разрыв, в определенном интервале температур существенно больше, чем у сталей с меньшим значением временного сопротивления. На рис. 214, кроме предела текучести при растяжении стали марки W3, изображены еще пределы текучести при нагреве в зависимости от температуры испытания двух марок обработанных термическим путем на различные пределы прочности при растяжении вольфрамовых штамповых сталей для горячего деформирования, а также стали К12 и мартенситно-стареющей стали. Однако относительное сужение площади поперечного сечения образца в случае инструментальных сталей с 5— 10% W и стали W3, имеющей предел прочности при растяжении более 1200 Н/мм', в интервале температур, превышающих 500° С, резко уменьшается, возникает охрупчивание при нагреве. Довольно часто можно наблюдать межкристаллитное разрушение вследствие образования вдоль границ зерен интерметаллидов, нитридов и других выделений. В сталях, полученных переплавом, этот вид охрупчивания встречается реже. Величина охрупчивания при нагреве тем больше, чем выше прочность стали и чем большей температурой закалки эта прочность была достигнута (рнс. 215). Вязкость при нагреве вольфрамовых сталей в большей степени зависит от скорости охлаждения. Чем меньше скорость охлаждения или чем больше можно обнаружить в структуре стали бейнита, возникающего при температуре выше 400—420° С, тем меньше вязкость стали при нагреве. Если переохлажденный аустенит превращается при температуре ниже 360—380° С, то опасность возникновения охрупчивания при нагреве также меньше. Повышение температуры испытания (а следовательно, и инструмента) до 500° С значительно увеличивает сопротивление хрупкому разрушению и энергию распространения трещин в сталях (рис. 216), закаленных в основном при пониженных температурах, а также полученных электрошлако-вым переплавом. Однако при температуре нагрева, превышающей 'iCU 500 600 Температура, °с Рис. 214. Влияние исходного предела прочности при растяжении на предел текучести при нагреве (-) и относительное сужение площади поперечиого сечения образца (------) штамповых пнструментальных сталей для горячего деформирования (на кривых указаны марка стали и предел прочности при растяжении, Н/мм^) 270
Карта
|
|
|
|
|
|
|
|
Страницы: 1 2 3... 267 268 269 270 271 272 273... 311 312 313
Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу |