Теория сварочных процессов






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Теория сварочных процессов

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 248 249 250 251 252 253 254... 558 559 560
 

главным образом два закона, известные из курса физики: первый закон термодинамики, представляющий собой закон сохранения материи и энергии, сформулированный в 1756 г. М. В. Ломоносовым, и второй закон термодинамики, позволяющий судить о возможности самопроизвольного развития процессов в данных физических условиях. Не довольствуясь общими феноменологическими уравнениями термодинамики, химическая термодинамика дополняет их квантово-механическим учением о строении вещества, привлекает статистический метод и этим значительно расширяет возможности исследования сложных материальных систем. Под термодинамической системой понимают комплекс физических тел, находящихся во взаимодействии между собой, мысленно обособленный от окружающей среды. Таким образом, термодинамическая система может взаимодействовать с окружающей средой. Изолированной системой называется система, у которой запрещен энергообмен и массообмен с окружающей средой: 2Л1 = = const; 2 £ = const. Замкнутая система может иметь энергообмен с окружающей средой, но массообмен запрещен: 2Af = const; Sf^ifcconst. Незамкнутые системы рассматриваются в особом разделе термодинамики — термодинамика неравновесных систем: ЛМф =7^const; 2£=5^const. По своему строению термодинамические системы могут быть гомогенными, т. е. однородными, если нет границ раздела между отдельными их частями (газовые смеси, растворы), или гетерогенными, в которых существуют границы раздела между отдельными частями системы — фазами, отличающимися друг от друга или химическим составом, или физическими свойствами, обусловленными строением (твердое тело — жидкость — пар и т. д.). Таким образом, фазой называется часть гетерогенной системы, отделенная физической границей раздела, т. е. границей резкого изменения свойств. Так как всякая граница раздела обладает запасом свободной энергии, то в системах высокой дисперсности свойства поверхностей раздела будут влиять на состояние системы и даже доминировать над объемными свойствами. Так, при высоком дроблении твердых или жидких фаз изменяются их температуры плавления, температуры кипения. Высокодисперсные системы могут создавать метастабильные системы — коллоидные растворы и аэрозоли. К таким системам общие термодинамические закономерности уже не приложимы. Совокупность всех свойств термодинамической системы определяет ее состояние. Любая физическая величина, влияющая на состояние системы — объем, давление, температура, внутренняя энергия, энтальпия или энтропия, — носит название термодинамического параметра или просто параметра. Для наиболее простой системы — идеального газа — можно ограничиться двумя параметрами Т 251
rss
Карта
 






Страницы: 1 2 3... 248 249 250 251 252 253 254... 558 559 560

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Справочник по сварке и склеиванию пластмасс
Контактная сварка. В помощь рабочему-сварщику
Справочник молодого электросварщика по ручной сварке: Справ, пособие для средних ПТУ
Теория сварочных процессов
Технология электрической сварки металлов и сплавов плавлением
Наплавка и напыление
Термическая обработка сплавов: Справочник

rss
Карта