Теория сварочных процессов






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Теория сварочных процессов

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 182 183 184 185 186 187 188... 558 559 560
 

(рис. 6.16, а). Температура точки А должна определяться как сумма температур от трех источников, действующих в бесконечной пластине. Для весьма узких пластин необходимо вводить многократное отражение теплоты от границы аналогично тому, как это сделано в случае нагрева точечным источником теплоты, движущимся по поверхности пластины (см. ниже). НАГРЕВ от КРАЯ ТЕЛА Весьма распространенный случай — нагрев пластины, когда источник теплоты начинает свое движение от ее края (рис. 6.16,6). Помимо того что здесь происходит процесс теплонасыщения, наблюдается также отражение теплоты от границы /—I. Учет отражения, если это необходимо, может быть выполнен путем введения фиктивного источника теплоты, который начинает движение одновременно с действительным источником теплоты из точки О, перемещаясь в противоположном направлении. Оба источника теплоты действуют в бесконечной пластине. Приращение температуры в точке А определится как сумма приращений температур от действительного и фиктивного источников теплоты. ТОЧЕЧНЫЙ ИСТОЧНИК НА ПОВЕРХНОСТИ ПЛАСТИНЫ Этот случай близок к наплавке валика на пластину. В зависимости от толщины расчет температуры ведут по одной из трех схем. Если пластина тонкая, то предполагают, что источник выделяет теплоту равномерно по толщине листа и расчет проводят, как для линейного источника теплоты в пластине. В толстых плитах отражением теплоты от нижней границы пренебрегают и расчет ведут по схеме точечного источника теплоты на поверхности полубесконечного тела. Наконец, если пластина не удовлетворяет первым двум схемам, то выбирают схему плоского слоя с точечным источником теплоты на поверхности (рис. 6.16, в), принимая, что обе поверхности не пропускают теплоту. При расчете температур в процессе сварки нельзя однозначно отнести пластину к тонкой или толстой. Если тепловыделение от источника теплоты происходит почти по всей толщине пластины, то она может быть отнесена к тонким, если даже ее толщина измеряется многими миллиметрами. Напротив, пластина толщиной 1 мм должна быть отнесена к толстым, если на ее поверхности действует весьма концентрированный маломощный Источник теплоты, не вызывающий глубокого проплавления, например остросфокусированный лазерный луч. Действительный точечный источник теплоты принимают перемещающимся по поверхности полубесконечного тела. Для учета отражения теплоты источника О от границы / вводят фиктивный точечный источник теплоты 0\ на поверхности полубесконечного тела (на расстоянии 26 от границы //). В свою оче 185
rss
Карта
 






Страницы: 1 2 3... 182 183 184 185 186 187 188... 558 559 560

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Справочник по сварке и склеиванию пластмасс
Контактная сварка. В помощь рабочему-сварщику
Справочник молодого электросварщика по ручной сварке: Справ, пособие для средних ПТУ
Теория сварочных процессов
Технология электрической сварки металлов и сплавов плавлением
Наплавка и напыление
Термическая обработка сплавов: Справочник

rss
Карта