Сварка, резка и пайка металлов






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Сварка, резка и пайка металлов

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 362 363 364 365 366 367 368... 387 388 389
 

резаемой толщины. Существуют эмпирические формулы для определения давления режущего кислорода в зависимости от раз­резаемой толщины. В обычных резаках с цилиндрическим или ступенчато-цилиндрическим соплом давление режущего кислорода на входе в резак меняется от 3—4 ати для малых толщин до 8—9 ати для толщины 100 мм, 11 —12 ати для 200 мм, 12—14 ати для 300 мм, 20—25 ати для 400—500 мм. Резка больших тол­щин становится практически невозможной отчасти из-за трудности пользования кислородом высокого давления (необходимость осо­бо прочных бронированных шлангов и т. п.), главным же обра­зом из-за быстрого расширения струи кислорода по выходе из сопла и значительного охлаждения кислорода вследствие дроссе­лирующего эффекта. Расширение струи объясняется несовершен­ством работы цилиндрического сопла, поэтому кислород по выходе из сопла имеет давление, значительно превышающее атмосферное, и продолжает расширяться в струе вне сопла, что и вызывает уве­личение сечения струи. Падение давления кислорода от входного до атмосферного вызывает значительное его охлаждение; чем выше входное давление, тем сильнее охлаждение. Расширение струи и охлаждение кислорода, тормозящее процесс резки, сказывается всё сильнее по мере повышения входного давления режущего кисло­рода, т. е. увеличения толщины металла.
Непрерывно растущая потребность резки всё больших толщин металла, соответственно общему росту мощности промышленности, заставляет более внимательно подойти к изучению процесса кисло­родной резки. Таким изучением применительно к резке больших толщин с конца 1948 г. занимались инж. М. М. Борт и автор на­стоящей книги, которые пришли к следующим основным выводам. Давление кислорода на входе в резак определяется главным обра­зом конструкцией резака и не является характерной величиной для процесса резки. Основными величинами являются скорость, длина и сечение струи кислорода. Скорость должна быть сверхзвуковой. Длина струи зависит от её начального сечения, конструкции сопла и скорости на выходе.
Строение струи и распределение скоростей в ней схематически показаны на фиг. 234. Струя режущего кислорода А имеет кони­ческую форму и постепенно сходит на нет. Струя кислорода увле­кает с собой окружающий воздух, образуя постепенно расширяю­щуюся наружную зону Б, заполненную смесью кислорода с возду­хом. Газы наружной оболочки Б перемещаются в осевом направ­лении, но со значительно меньшей скоростью, быстро уменьшаю­щейся в радиальном направлении. Примерное распределение скоро­стей в сечениях струи /—/, 2—2 и 3—3 показано на фиг. 234.
По мере удаления от среза мундштука уменьшаются сечение кислородной струи и скорость движения кислорода в ней и, на­конец, струя становится практически непригодной для резки. Уменьшение сечения и скорости струи служит основной причи­ной так называемого отставания при резке, о котором говорилось выше.
360
rss
Карта
 






Страницы: 1 2 3... 362 363 364 365 366 367 368... 387 388 389

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Технология металлов и сварка
Технология конструкционных материалов и материаловедение: Учебное пособие
Сварка, резка, пайка металлов
Сварка, резка и пайка металлов
Променеві методи обробки: Навч. посібник
Сварные базовые детали станков и машин. Обзор
Руководство по пайке металлов

rss
Карта