Оcновы сварки судовых конструкций






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Оcновы сварки судовых конструкций

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 131 132 133 134 135 136 137... 277 278 279
 

изделиях, работающих в условиях глубокого холода. В судостроении применяется для различного рода трубопроводов (в том числе для тру­бопроводов забортной воды).
Алюминий - легкий, хорошо тепло- и электропроводный металл, об­ладает высокими пластическими свойствами, слабомагнитен. Обла­дая высокой химической активностью, легко образует окисную пленку, плотно сцепленную с поверхностью металла. Благодаря защитному дей­ствию окисной пленки металл обладает высокой коррозионной стой­костью в атмосферных условиях и средах, которые эту пленку не разру­шают (в том числе в морской воде).
Чистый алюминий применяется в электропромышленности, а его более прочные сплавы - в разнообразных авиа- и космических конст­рукциях, в автомобильной, строительной промышленности. В судостро­ении - для изготовления надстроек, корпусов судов с динамическими способами поддержания, катеров и яхт.
Титан - химически активный металл при высокой температуре (осо­бенно в расплавленном состоянии), хотя при комнатной температуре весьма устойчив против окисления. Теплопроводность у него меньше, чем у меди и алюминия, а удельное электросопротивление больше, не­магнитен, обладает весьма высокой коррозионной стойкостью во мно­гих средах (в том числе в морской воде), что объясняется образованием на его поверхности плотной защитной окисной пленки.
Чистый титан весьма пластичен при относительно невысокой проч­ности. Имеет две модификации (аир). При легировании такими эле­ментами как алюминий, ванадий, марганец, цирконий, железо, олово и др. прочность сплавов может достигать весьма высоких значений. Ши­рокое применение имеют а-сплавы титана, которые наряду с высокой прочностью хорошо поддаются всем видам технологической обработ­ки. Из многих марок титановых сплавов изготовляются листы, профиль­ный прокат, прутки, полосы, трубы, проволока, фольга и пр.
Находит широкое применение в химическом машиностроении, авиа-, ракето-, приборостроении, металлургической и пищевой промышлен­ности. В судостроении применяется для изготовления трубопроводов, теплообменных аппаратов. Имеются случаи применения сплавов тита­на в качестве конструкционного корпусного материала (корпус подвод­ной лодки «Комсомолец»).
Для всех рассматриваемых металлов и сплавов можно выделить сле­дующие особенности, осложняющие в той или иной мере их сваривае­мость.
1. Высокое сродство к кислороду (особенно у титана и алюми­ния). Так, при сварке алюминия и его сплавов вследствие
легкой окисляемости в твердом и расплавленном состоянии об­разуется тугоплавкая (-2050 °С) пленка окиси А12Ог Она пре­пятствует плавлению, ухудшает формирование шва и засоря­ет его окисными неметаллическими включениями. При сварке титана и его сплавов в твердом нагретом и расплавлен­ном состоянии проявляется его чрезвычайно высокая химическая ак­тивность, приводящая к растворению в жидком титане кислорода, азо­та и водорода с неизбежной потерей пластичности и охрупчиванию металла шва до недопустимых величин. С учетом возможности появле­ния холодных трещин, указанные обстоятельства предъявляют к тех­нологии сварки особые требования по защите алюминия от появления пленки А1203 при сварке и особо тщательной защите зоны сварки и при­легающих к ней нагретых поверхностей металла от проникновения атмосферных газов для титана.
Следует также отметить, что высокая растворимость в жидких ме­таллах (особенно алюминии) таких газов как водород приводит к обра­зованию в металле шва газовой пористости.
2. Высокая теплопроводность и теплоемкость таких металлов как медь и алюминий вызывает быстрое охлаждение зоны сварки и требует применения более мощных локализованных источников теплоты, чем при сварке сталей перлитного класса. Высокий те­пловой коэффициент линейного расширения и большая усадка алюминия приводят к повышенным сварочным деформациям.
3. Значительная жидкотекучесть меди и алюминия, потеря проч­ности этих металлов в определенных интервалах температур при нагреве может приводить к возможности разрушения во время сварки (алюминий) либо появления трещин при сварке в жест­ком закреплении (медь). Это требует применения подкладок при сварке «на весу» (алюминий) или ослабления жесткости соеди­нения (медь).
4. Низкая температура плавления и кипения отдельных легирую­щих элементов у некоторых сплавов (например, цинка и олова в латунях и бронзах) приводит к образованию легколетучих паров, что, с одной стороны, определяет образование пористости в ме­талле шва, а с другой, ухудшает санитарно-гигиенические усло­вия в районе сварки из-за высокой ядовитости этих паров.
5. Теплофизические свойства таких металлов как медь и алюминий (и их сплавов) приводят к крупнокристаллическому строению металла шва при его кристаллизации, что при наличии легко­плавких эвтектик повышает склонность металла шва к образова­нию горячих трещин.
264
265
rss
Карта
 






Страницы: 1 2 3... 131 132 133 134 135 136 137... 277 278 279

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу



Азотирование и карбонитрирование
Оcновы сварки судовых конструкций
Материаловедение
Російсько-український словник зварювальної термінології. Українсько-російський словник зварювальної термінології.
Металловедение для сварщиков (сварка сталей)

rss
Карта