Механические свойства металлов
Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо
Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .
Страницы: 1 2 3... 164 165 166 167 168 169 170... 348 349 350
|
|
|
|
|
|
|
|
|
|
|
В
последние десятилетия показано, что зуб и площадку текучести можно
получить при растяжении моно- и поликристаллов металлов и сплавов с
различными решетками и микроструктурой. Наиболее часто фиксируется резкая
текучесть при испытании металлов с о. ц. к. решеткой и сплавов на их
основе. Естественно, практическое значение резкой текучести для этих
металлов особенно велико, и большинство теорий также разрабатывалось
применительно к особенностям этих материалов. Использование
дислокационных представлений для объяснения резкой текучести
было одним из первых и очень плодотворных приложений теории
дислокации.
Вначале
образование зуба и площадки текучести в о. ц. к. металлах связывали с
эффективной блокировкой дислокаций примесями. Известно, что в о. ц. к.
решетке атомы примесей внедрения образуют не обладающие шаровой
симметрией поля упругих напряжений и взаимодействуют с дислокациями
всех типов, в том числе с чисто винтовыми. Уже при малых
концентрациях [<10-1—10~2 %' ;(ат.)] примеси
(например, азот и углерод в железе) способны блокировать все
дислокации, имеющиеся в металле до деформации. Тогда, по Коттреллу, для
начала движения дислокаций и для начала пластического течения необходимо
приложить напряжение, гораздо большее, чем это требуется для
перемещения дислокаций, свободных от примесных атмосфер.
Следовательно, вплоть до момента достижения верхнего предела
текучести заблокированные дислокации не могут начать двигаться, и
деформация идет упруго. После достижения ат.в по крайней мере часть этих
дислокаций (расположенных в плоскостях действия максимальных
касательных напряжений) отрывается от своих атмосфер и начинает
перемещаться, производя пластическую деформацию. Последующий спад
напряжений — образование зуба текучести—происходит потому, что
свободные от примесных атмосфер и более подвижные дислокации
могут скользить некоторое время под действием меньших напряжений ат.н, пока их торможение не вызовет
начала обычного деформационного упрочнения.
Подтверждением
правильности теории Коттрелла служат результаты следующих простых
опытов. Если проде-формировать железный образец, например до точки А |(рис. 91), разгрузить его и
тут же вновь растянуть, то зуба и площадки текучести не возникнет, потому
что после предварительного растяжения в новом исходном состоянии
образец содержал множество подвижных, свободных от
при- |
|
|
|
|
|
|
|
|
|
|
|
|
|
Карта
|
|
|
|
|
|
|
|
Страницы: 1 2 3... 164 165 166 167 168 169 170... 348 349 350
Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу |