Конденсаторные машины для контактной сварки






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Конденсаторные машины для контактной сварки

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3 4 5 6 7... 53 54 55 56
 

пример, по этой причине затруднена сварка на существующих КМ сплавов типа АМгб толщиной 2,0 мм, в то время как на них же сварка легких сплавов других типов осуществляется с наилучшими результатами. Толщина деталей из легких сплавов, свариваемых на существующих КМ, не превышает 3,0 мм. Создание КМ обычного типа для сварки деталей большей толщины нецелесообразно, так как при дальнейшем увеличении длительности им-яульса тока относительно резко возрастают масса и габариты батареи конденсаторов и сварочного трансформатора, а также стоимость КМ. В других случаях недостатком КМ является ограниченная возможность управления сварочным током в процессе сварки. В результате при достаточной длительности импульса тока иногда трудно получить форму импульса, технологически наиболее оптимальную при сварке данных деталей. Попытки преодолеть этот недостаток КМ путем комбинирования разрядов нескольких батарей конденсаторов, сочетания тока разряда батареи с током иного рода и т. д. дают положительные результаты лишь в частных случаях. В последние годы разработаны КМ с преобразованием разрядного тока конденсаторов в переменный ток на первичной обмотке сварочного трансформатора, причем частота первичного тока составляет от десятков до сотен, иногда тысяч герц. Регулируя частоту переменного тока и число импульсов в пачке, воздействуют на форму импульса и на процесс тепловыделения во время сварки. Перспективными областями для использования КМ этого типа являются: а) микросварка, где ток промышленной частоты является лимитирующим фактором для получения высококачественных соединений; б) сварка болыиих толщин и сечений, в том числе рельефная сварка большого числа компактных рельефов или сварка рельефов развитого сечения, когда снижение потребляемой из электросети мощности становится одним из важнейших факторов. Учитывая тенденции в разработке КМ, можно предположить, что в дальнейшем будут созданы новые типы машин, большинство которых составят мощные специализированные машины. Наряду с КМ обычного типа (с нерегулируемым в процессе сварки током) будут применяться ТСМ с преобразованием разрядного тока в переменный ток повышенной частоты и с модулированным импульсом тока, а также КМ с ограниченным управлением, получаемым за счет наложения разрядных токов двух и более батарей конденсаторов. Область применения КМ должна расширяться как за счет создания специализированных машин для сварки новых изделий, материалы и толщины кото*-рых находятся в диапазоне уже освоенных, так и за счет расширения диапазона толщин деталей и свариваемых сечений. Значительный резерв улучшения мощных КМ заложен в повышении производительности машин, ограниченной, как правило, допустимым темпом циклирования электролитических конденсаторов в режиме заряд—разряд. Предполагается разработать новые конденсаторы с увеличением среднего темпа циклирования до 40 циклов в минуту, а также новые силовые схемы КМ, ограничивающие разряд конденсаторов по напряжению на уровне 20—40°/о' номинального, что позволит повысить производительность, машин приблизительно вдвое. Эффективным путем повышения производительности КМ в два и более раза является также применение неполярных, например металлобу-мажных, конденсаторов. Увеличение рабочего напряжения до 1000 В, более удобная, если учесть прямоугольный корпус, компоновка конденсаторов в батарее, отсутствие вентиляторных систем охлаждения позволяет при этом сохранить массу и габариты конденсаторной батареи на уровне параметров батареи с электролитическими конденсаторами. 1.2. Функциональное устройство и принцип работы машин В составе каждой КМ, как и любой другой машины контактной сварки, выделяют три основные части: силовую электрическую, механическую и аппаратуру управ*-ления. Механические части КМ — корпуса, приводы сжатияе электродов, пневматические устройства, системы охлаждения и т. д. — не отличаются принципиально от таких же-частей контактных машин других видов. Следует лишь отметить, что в КМ применяются, как правило, приводы сжатия электродов с высокими динамическими качествами, обеспечивающие высокую подвижность электрода, что обусловлено кратковременностью процесса формирования, сварного соединения при сварке на КМ. Аппаратура управления КМ отличается от аппаратуры; других контактных машин наличием системы управления-зарядным выпрямителем, обеспечивающей регулирование^ стабилизацию и контроль рабочего напряжения на конденсаторах. Остальные цепи управления КМ аналогичны цепям других контактных машин, причем регуляторы цикла в обычных КМ относятся к простейшим, так как не содер^
rss
Карта
 






Страницы: 1 2 3 4 5 6 7... 53 54 55 56

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Машины и агрегаты трубного производства
Электродуговая сварка и наплавка под керамическими флюсами
Теория сварочных деформаций и напряжений
Конденсаторные машины для контактной сварки
Сварка в защитных газах плавящимся электродом
Сварка строительных металлоконструкций порошковой проволокой
Сварка и резка в промышленном строительстве. 2 т. Т. 1

rss
Карта