Коррозионностойкие, жаростойкие и высокопрочные стали и сплавы
Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо
Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .
Страницы: 1 2 3... 10 11 12 13 14 15 16... 231 232 233
|
|
|
|
200 150 100 50 -50 • 21 % Cr + 1 % Мо о 25 % Сг + 3 % Мо 17 % Сг 0 0,01 0,02 0,03 0,04 С + N. % Рис. 1. Влияние С + N на температуру перехода сталей в хрупкое состояние [3] 0 0,02 0,01 С + N, % Рис. 2. Влияние С, N и Nb на стойкость к межкристаллитной коррозии стали Х19М2 после нагрева на 1250 °С[4] 2)ограниченная хладостойкость сталей и их сварных соединений (до -40 "С); 3)недостаточная способность к формоизменению при холодной пластической деформации, что связано с меньшим количеством реализуемых плоскостей скольжения в решетке ОЦК. Введение карбидообразующих элементов, например титана, не только повышает стойкость сварных соединений против межкристаллитной коррозии, но и позволяет снизить склонность к росту зерна (сталь 08X18Т1). Дополнительное замедление роста зерна ферритных сталей происходит также при микролегировании поверхностно-активными элементами, наибольший эффект из которых имеет церий. Микролегирование церием использовано, в частности, в стали 08Х18Тч (ДИ-77). Положительный эффект от введения редкоземельных элементов достигается только в определенных количественных пределах и при соблюдении технологического процесса. На снижение хладноломкости ферритных сталей значительное влияние оказывают примеси внедрения — углерод и азот. При суммарном содержании углерода и азота 0,01 % работоспособность сварных соединений из высокохромистых ферритных сталей при отрицательных температурах возрастает, что иллюстрируется данными, приведенными на рис. 1. Другие примеси (фосфор, кислород, в меньшей степени сера, марганец и кремний) тоже повышают чувствительность ферритных сталей к хладноломкости. Необходимость повышения чистоты металла хромистых ферритных сталей предъявляет повышенные требования к технологии выплавки. Стойкость против межкристаллитной коррозии высокохромистых сталей ферритного класса достигается при суммарном содержании углерода и азота до 0,010—0,015 % (рис. 2). Превышение указанного содержания (С+1М) требует дополнительного введения стабилизаторов — титана или ниобия.
Карта
|
|
|
|
|
|
|
|
Страницы: 1 2 3... 10 11 12 13 14 15 16... 231 232 233
Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу |