Технология термической обработки металлов с применением индукционного нагрева






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Технология термической обработки металлов с применением индукционного нагрева

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3 4 5... 40 41 42 43
 

Рис. 1.2. Распределение температуры по сечению изделия при индукционном нагреве: /к —точка Кюри, г,а„ — температура закалки; /„ температура поверхности; \'к -глубина проникновения тока радиочастоты в горячий металл; \'\ то же тока звуковой частоты; / начальный период; 2 — нагрев током радиочастоты после нагрева до А'к; 3 — то же после нагрева до заданной глубины хк; 4 — нагрев током звуковой частоты до хк распределения индукционного тока по глубине, а значит, и кривая распределения температуры по сечению тела будут иметь перегиб на границах глубины проникновения тока в горячий металл (рис. 1.2). Чем выше частота тока, тем меньше глубина проникновения тока в холодный и горячий металл, тем ближе к поверхности начнется спад температуры. При нагреве, даже быстром, свойственном поверхностной закалке, невозможно полностью избежать явления теплопроводности. Часть энергии будет отводиться в глубь изделия. При поверхностной закалке стремятся выбирать такие режимы, чтобы нагретый слой не превышал "горячей" глубины проникновения тока. Такой нагрев называется глубинным [1]. 1.2. СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В СТАЛИ И ЧУГУНЕ ПРИ НАГРЕВЕ Качество нагрева при термической обработке определяется степенью завершенности фазовых превращений в металлах и сплавах. Для углеродистой стали к таким процессам относятся превращения эвтекто-ида (перлита) в аустенит, превращение структурно свободного феррита в доэвтектоидных сталях и растворение избыточных карбидов в заэвтек-тоидной стали. Рассмотрим влияние быстрого индукционного нагрева на кинетику протекания этих процессов. Состав фаз в углеродистой стали при различных уровнях температуры и характер фазовых переходов определяются диаграммой состояния сплавов железа с углеродом (см. рис. 1.1). Из диаграммы видно, что перлит, представляющий собою эвтектоидную смесь двух фаз (феррита и цементита), при нагреве до температуры, обозначенной на диаграмме А,, начинает превращаться в аустенит. В реальных условиях процесс идет при некотором перенЭ*реве до точки Ас,, и чем больше разность Ас — А,, тем быстрее идет процесс, так как увеличивается разность равновесных концентраций углерода в аустените на границах с цемен титом и ферритом Сц — Сф и увеличивается подвижность атомов углерода. Расчеты, построенные на законах диффузии, показывают, что превращения перлита в аустенит по своей природе — быстропротекающий процесс. Тонкопластинчатый перлит может перейти в аустенит при температурах, близких к А\, в течение 0,1—0,2 с, грубопластинчатый — за 0,8—1,0 с. Однако теоретическая расчетная скорость превращения может быть достигнута только в том случае, если это превращение, по своей природе эндотермическое и идущее с поглощением тепла в количестве 80 Дж/г, будет обеспечено необходимым количеством энергии. В термических печах передача нужного количества энергии затруднена и превращение искусственно затягивается. При индукционном нагреве тепловая энергия генерируется непосредственно в поверхностных слоях обрабатываемого изделия, поэтому мощность, передаваемая в изделие, не ограничивается. Увеличение скорости нагрева, связанное с увеличением передаваемой в изделие мощности, вызывает ускорение процесса превращения, которое при реальных режимах термической обработки углеродистой стали завершается в полной мере при температуре, близкой к А\. Только при очень быстрых процессах поверхностной закалки, когда время нагрева исчисляется долями секунды, приходится учитывать время превращения перлита в аустенит и повышать конечную температуру нагрева существенно выше точки Ас\, определенной для данной стали при медленном нагреве. В этом случае говорят об интервале температур превращения перлита в аустенит. Сказанное выше справедливо для углеродистой стали, т. е. сплава железа с углеродом. Введение в сплав легирующих элементов может оказать влияние на кинетику превращения перлита в аустенит. Такие элементы, как никель, не образуют с углеродом химического соединения (карбида), а входят в состав твердого раствора в железе, понижая температуру перлитного превращения А\. С точки зрения условий нагрева это действие благоприятно, так как позволяет применить более низкие температуры нагрева. На кинетику перехода перлита в аустенит такие элементы оказывают слабое влияние, которое в практике термической обработки можно не учитывать. Кремний, так же как и никель, не образует в стали карбидов, но он повышает температуру начала перлитного превращения. Кроме того, кремний существенно замедляет диффузию углерода в железе, что приводит к необходимости для-. форсировання процесса повышать температуру нагрева при термической обработке по сравнению с углеродистой сталью. Большинство элементов, применяющихся для легирования конструкционной стали, образуют с углеродом карбиды, стойкие при относительно высоких температурах. К ним относятся хром, титан, ванадий, вольфрам и др. Скорость превращения эвтектоида, легированного этими элементами, много меньше скорости превращения перлита в углеродистой стали. Поэтому при индукционном нагреве превращение протекает в некотором интервале температур и температура окончания процесса может оказаться выше на несколько десятков градусов.
rss
Карта
 






Страницы: 1 2 3 4 5... 40 41 42 43

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Электротермическое оборудование
Материаловедение
Технологія конструкційних матеріалів
Технология термической обработки металлов с применением индукционного нагрева
Справочник по конструкционным материалам
Коррозионностойкие, жаростойкие и высокопрочные стали и сплавы
Стали и сплавы. Марочник

rss
Карта