стали аустенитного класса, содержащие углерода больше предела его растворимости (более 0,02%), при отсутствии в их составе более сильных карбидообразующих элементов, чем хром, в околошовной зоне под воздействием термического цикла сварки становятся склонными к межкристаллитной коррозии. Объясняется это тем, что в таких сталях даже при кратковременном нагреве в области температур 600—800° С по границам зерен выпадают карбиды хрома. Последние появляются вследствие того, что при содержании углерода выше предела растворимости образующаяся аустенитная структура стали находится в состоянии неустойчивого равновесия. Поэтому при повторных нагревах в области температур 400— 800° С она распадается и прежде всего в пограничных слоях, где свободная энергия наибольшая. Выпадение карбидов хрома приводит к снижению содержания этого элемента в пограничных участках зерна, так как диффузия углерода из центральных участков зерна к границе вследствие значительно большего ее коэффициента, чем коэффициент диффузии хрома, протекает значительно быстрее и поэтому вновь поступивший в пограничные участки углерод соединяется с содержащимся здесь хромом. Снижение содержания хрома в пограничных участках зерна, особенно ниже так называемого порога устойчивости, равного 12,5%, приводит к потере в этих участках способности к пассивации, что.и вызывает появление здесь коррозиционного растрескивания. Все это говорит о том, что в сварных конструкциях, комбинируемых из аустенитных хромоникелевых разнородных сталей и предназначенных для работы в агрессивных средах, следует стремиться применять стали с низким содержанием углерода. При выборе конкретною содержания этого элемента необходимо учитывать, что чем меньше сталь содержит углерода, тем после более длительной выдержки в области критических температур она становится склонной к межкристаллитной коррозии. Допустимое содержание углерода в хромоникелевой аустенитной стали, предназначенной для работы в агрессивных средах, зависит также от содержания в ней хрома и никеля. В сталях, содержащих 9—11% никеля и более 18% хрома, количество углерода может достигать 0,04%. При кратковременных выдержках в области критических температур коррозионностойкая аустенитная сталь несклонна к межкристаллитной коррозии даже при содержании в ней углерода 0,07—0,08% [51]. Если в стали, используемой в конструкциях, предназначенных для работы в агрессивных средах, необходимо, чтобы содержание углерода было более высоким, она должна быть легирована элементами, обладающими большим сродством к углероду, чем хром, Такими элементами являются титан, ниобий, тантал, цирконий, ванадий и вольфрам. При наличии этих элементов в стали углерод, выделившийся в процессе повторного нагрева из твердого раствора, прочно связывается и тем самым исключается его соединение с хромом, приводящее к обеднению этим элементов пограничных участ- ков зерен. В результате этого участки околошовной зоны такой стали при кратковременных нагревах в области критических температур (600—800° С) не становятся склонными к межкристаллитной коррозии. Из упомянутых карбидообразующих элементов с большим чем у хрома сродством к углероду наиболее устойчивые карбиды образуют титан и ниобий. Поэтому прежде всего ими должна быть легирована хромоникелевая аустенитная сталь, используемая в конструкции, предназначенной для работы в агрессивных средах, и содержащая углерода больше предела его растворимости. Совершенно очевидно, что содержание этих элементов в указанной стали должно быть таким, чтобы обеспечить соединение всего углерода, выделяющегося из твердого раствора при повторном нагреве, количество которого равно разности между концентрацией углерода в стали и его предельной растворимостью, равной, как принято считать, 0,02%. В таком случае требуемое количество карбидообразующего элемента определяется по типу образуемого им карбида. При этом необходимо полученное количество несколько завысить, так как некоторая часть его должна оставаться в твердом растворе, а часть может быть израсходована на взаимодействие с другими находящимися в стали элементами. С учетом сказанного, для обеспечения стойкости против межкристаллитной коррозии околошовной зоны сталь должна содержать титана или ниобия в количествах, определяемых по следующим уравнениям: Тт 5(С — 0,02)%, №) 8(С — 0,02)%. Следует отметить, однако, что практическое осуществление указанных рекомендаций нередко затруднено, так как выбор требуемого состава хромоникелевых сталей аустенитного класса ограничен. Поэтому при изготовлении сварных конструкций с использованием таких сталей для устранения полученной в околошовной зоне склонности к межкристаллитной коррозии сварные соединения или конструкцию в целом подвергают специальной термической обработке. Наиболее простым видом ее является нагрев до температур 950—1150° С с последующим быстрым охлаждением. При таком нагреве усиливается диффузия хрома из центральных участ-к©в зерна к его границе, а также растворяются выпавшие карбиды. В результате этого повышается содержание хрома в обедненных участках и они становятся склонными к пассивации, и, следовательно, стойкими против межкристаллитной коррозии. Быстрое охлаждение термообрабатываемого сварного соединения или всей конструкции требуется для того, чтобы исключить новое выделение карбидов. Склонность высоколегированных хромоникелевых сталей к межкристаллитной коррозии значительно уменьшается при наличии в них ферритной фазы. В результате повторного нагрева таких сталей карбиды образуются по границам ферритных зерен. Так как феррит
Карта
|
|