iРис. 12.4. Микроструктура наплавленного металла типа 30Х25РС после на- jплавки при силе тока 140—150 (а) н 200—220 А (б), Х200 ния, что приведет к дополнительному повышению износостойкости как при трении по абразиву, особенно при повышенном давлении на абразив, так и при ударно-абразивном изнашивании. Для износостойкого наплавленного металла особенно благоприятно, когда при изнашивании имеющийся в матрице аустенит частично сохраняется, а частично превращается в мартенсит (30—50 %). Это позволяет при сохранении вязкости сплава повысить его износостойкость. Ледебурит может быть матрицей в высокоуглеродистом легированном наплавленном металле. Назвать ледебурит матрицей можно условно, так как он содержит значительное количество феррита, мартенсита или аустенита. Однако однотипность и относительная однородность позволяют считать его основой, в которой размещаются дополнительные включения твердых фаз, чаще всего карбидов и боридов. Таким образом, учитывая приведенное ранее о твердых фазах и матрице износостойкого наплавленного металла, по структурно-фазовому состоянию они могут быть мартенситными (М), мартен-ситно-карбидными 1 (М+ К), ферритно-карбидными (Ф + К), аустенитно-карбидными (А + К), ледебуритно-карбидными (Л + + К) и со смешанными матрицами, состоящими из М + А, М + + Ф, А + Л, М -4- Л. Характерные структуры наплавленного металла приведены на рис. 12.3. Учитывая, что наплавленный металл используется в работе чаще всего без термической обработки, его структурно-фазовое состояние и износостойкость определяются главным образом содержанием углерода и легирующих элементов. 1 Кроме карбидов могут б ыть любые твердые частицы — карбобориды, бориды, ннтерметаллиды и др.
Карта
|