Металловедение сварки и термическая обработка сварных соединений






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Металловедение сварки и термическая обработка сварных соединений

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 155 156 157 158 159 160 161... 165 166 167
 

12. ИЗНОСОСТОЙКИЙ НАПЛАВЛЕННЫЙ г

и

12.1. ОСОБЕННОСТИ СТРОЕНИЯ И СВОЙСТВА|'|

ИЗНОСОСТОЙКИХ НАПЛАВЛЕННЫХ СЛОЕВЯ

Наплавка рабочих поверхностей изделий твердосплавными покрытиями разного состава и строения производится, как правило, в целях повышения сопротивляемости абразивному изнашиванию. Наносят такие покрытия чаще всего методами ручной и механизированной дуговой, плазменно-дуговой и, реже, газоплазменной наплавкой. Твердосплавные покрытия обычно представляют собой высокоуглеродистые сплавы на основе железа, по составу и строению они близки к инструментальным сталям и чугунам. Реже применяют материалы с невысоким содержанием углерода (0,4—0,7 %).

В последние годы в целях повышения износостойкости стали применять материалы на никелевой основе для поверхностного армирования методами плазменного и газоплазменного напыления и плазменно-дуговой наплавки. Ниже рассмотрены наиболее широко применяемые сплавы на основе железа. Условия воздействия на металл абразивной среды и разрушение его металлической поверхности предопределяют необходимый состав, микростроение, фазовое состояние и свойства наплавленного металла.

В зависимости от размеров и свойств абразивных частиц, а также характера воздействия абразива на поверхность металла (трение по монолитному абразиву, трение по сыпучему абразиву, ударно-абразивное изнашивание и др.) разрушение металла может быть связано с внедрением в него абразива и последующим процессом микрорезания или процессом деформирования, наклепа и разрушения наклепанного металла. При ударно-абразивном изнашивании также может иметь место хрупкое разрушение металла поверхности. Многократное воздействие на металлическую поверхность абразива способно вызвать усталостное разрушение. Однако во всех отмеченных случаях первоначальным актом, приводящим к разрушению, является внедрение абразива в поверхность металла.

Для противодействия такому воздействию абразивной среды металл должен иметь твердую составляющую. Такой составляющей в металле могут быть карбиды, бориды, карбобориды, карбо-нитриды, интерметаллические соединения, а в ряде случаев эти функции в определенной степени может выполнять мартенсит. Естественно, что твердые частицы карбидов и других соединений для наиболее эффективного использования должны прочно удер-314

Рис. 12.1. Влияние содержания углерода и степени легирования на износостойкость И при абразивном изнашивании с давлением 1,27 МПа (а) и относительную износостойкость при ударно-абразивном изнашивании при энергии удара 20 Дж (б) сталей:

/ в« нелегироваииой после закалки и отпуска при 200 °С; 2 — легированной после закалки и отпуска при 600 °с; 3 — легированной 1,6 % V после закалки и отпуска при 200 сс; 4 и 5 — легированной 12 % V после закалки и отпуска соответственно при 200 и 600 °С

0,7

4,5

10,5

0,6 0,4

13,5

0,3 0,5 0,7

4,5 7,5 10,5 13,5 16,5Fe,C,% В)

живаться матрицей — основой сплава. Однако матрица сплава должна не только хорошо удерживать твердые частицы, но и вносить свой вклад в обеспечение противодействия абразиву и повышение износостойкости. Матрицей, которая вносит свой вклад в повышение износостойкости, являегся мартенсит. Свойства мартенситной матрицы зависят от содержания в ней углерода. Низкоуглеродистый мартенсит будет иметь пониженную износостойкость, но благодаря высокой по сравнению с высокоуглеродистым мартенситом вязкости будет лучше удерживать включения твердых износостойких частиц и обеспечивать повышение сопротивления ударным нагрузкам, характерным при ударно-абра-аивном изнашивании. При повышении содержания углерода в мартенсите износостойкость при трении по абразиву будет непрерывно повышаться (рис. 12.1, а). При ударно-абразивном изнашивании повышение износостойкости будет происходить только до определенного содержания углерода в мартенсите, после чего будет снижаться (рис. 12.1, б). В нелегированных сталях с содержанием углерода примерно до 1,2 % после закалки и низкого отпуска свободных карбидов в структуре практически нет, и изменение содержания углерода в стали изменяет содержание углерода в мартенсите, что позволяет судить об износостойкости мартенситной матрицы.

rss
Карта
 






Страницы: 1 2 3... 155 156 157 158 159 160 161... 165 166 167

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Соединение труб из разнородных металлов
Сварка модулированным током
Современные средства защиты сварщиков
Металловедение сварки и термическая обработка сварных соединений
Технология и оборудование контактной сварки. Учебное пособие для машиностроительных и политехнических втузов
Контактные металлургические процессы при пайке
Диффузионная сварка разнородных материалов: учеб. пособие для студ. высш. учеб. заведений

rss
Карта