Другой мерой предотвращения образования горячих трещин может быть нарушение транскристаллитного строения металла шва. Для этого композицию металла шва (соотношение содержания элементов ферритизаторов и аустенитизаторов) выбирают такой, чтобы шов получился не чисто аустенитным, а аустенитно-ферритным с небольшим количеством феррита (3—5 %). Этот первичный б-феррит нарушает сплошность аустенитных зерен, становится прослойкой между аустенитными кристаллитами и нарушает транскристаллизаиию. Непрерывная транскристаллитная граница аустенитных зерен прерывается ферритными включениями. Это важно не столько для локализации кристаллизационной трещины, сколько для предотвращения ее образования в связи с тем, что нарушается сплошность межзеренного каркаса легкоплавкой прослойки при кристаллизации. Выделения феррита в аустенитном шве не должны образовывать сплошной сетки, ибо ферритный каркас может оказать вредное влияние на требуемые свойства металла. Феррит, как более хрупкая фаза, находясь в виде каркаса, может повлиять на хладостойкость стали. Он может снизить и пластичность при длительной работе в условиях высоких температур. Феррит в большей мере, чем аустенит, склонен к выделению о-фазы, снижающей пластичность и ударную вязкость. Поэтому присутствие более 8 % феррита в аустенитных швах нежелательно. В то же время разорванные ферритные выделения в аустенитном металле (обычно до 5 % феррита) могут даже оказать положительное влияние на свойства, разрывая непрерывность границ аустенитных зерен. Помимо горячих кристаллизационных трещин в сварных швах аустенитных сталей могут возникать горячие высокотемпературные полигонизационные трещины, образующиеся в довольно узком интервале температур, находящемся несколько ниже температуры кристаллизации. Б. А. Мовчан показал, что в литом аустенитном металле при достаточно медленном охлаждении после кристаллизации дефекты кристаллического строения начинают мигрировать, сосредоточиваясь с образованием полигональных границ субзерен. Эти полигональные границы в отдельных местах могут совпадать со старыми границами аустенитных кристаллитов, с участками сосредоточения примесей, здесь могут зарождаться трещины под влиянием напряжений, вызываемых усадкой металла. Для подавления образования таких трещин можно увеличивать скорость охлаждения с тем, чтобы не дать развиться поли-гонизацин. Уменьшение опасности появления полигонизационных трещин может быть достигнуто специальным легированием, уменьшающим подвижность полигонизационных границ. / Горячие трещины могут возникать как в металле шва, так 'и в околошовных зонах в высокотемпературных участках, подвергаемых оплавлению с прониканием жидкой фазы по границам 1зерен. При этом оплавленные пограничные обогащенные примесями участки могут иметь двоякое значение для образования тре-274 шин (по данным Б. И. Медовара). С одной стороны, при кристаллизации так же, как и в шве, по рассмотренным выше причинам они могут стать очагами образования трещин, с другой—расплав может играть роль поверхностно-активного вещества и способствовать образованию трещин на примыкающих неоплавленных границах. Г В сварных соединениях высоколегированных хромоникелевых /сталей при определенных условиях могут образовываться и холодные трещины. Б. И. Медовар указывает на возможность образова-/ния таких трещин в двух температурных зонах — в интервале ; 500—700 °С и после полного охлаждения. Трещины, образующиеся С\\ при 500—700 °С, связаны с фазовыми изменениями, приводящими к повышению жаропрочности, повышению хрупкости и понижению пластичности металла. Причины возникновения холодных трещин были рассмотрены выше. Процессы, протекающие при сварке различных по назначению и исходному фазовому и структурному состояниям свариваемых сталей, имеют много общего. Эта общность процессов связана со следующим. У всех сталей при сварочном нагреве участки ЗТВ, примыкающие к сварному шву при сварке плавлением, или участки сварилаемых поверхностей при сварке давлением являются в основном аустенитными. В тех случаях, когда при нагреве дополнительно образуется феррит, количество его не велико, тем более что небольшое количество феррита оказывает положительное влияние иа уменьшение возможности образования кристаллизационных трещин. Получение аустенитного состояния в зоне сварки рассматриваемых сталей после завершения сварочного нагрева обеспечивает и после охлаждения создание аустенитной основы в определенных участках ЗТВ, примыкающих к участку сплавления или соединения. В указанных участках даже высокопрочных маргенситно-стареюших и аустенитно-мартенситных сталей после сварки сохраняется аустенитная основа. Это обстоятельство обеспечивает достаточно хорошую свариваемость практически всех высоколегированных хромоникелевых сталей. Положительное значение для свариваемости рассматриваемых сталей имеет и то обстоятельство, что рост аустенитного зерна в ЗТВ этих сталей происходит в меньшей степени, чем в ЗТВ углеродистых и низколегированных сталей, и уровень сварочных остаточных напряжений ниже, чем у низколегированных и даже углеродистых сталей. Объясняется это более низким пределом текучести аустенитных сталей. В то же время относительная деформация отдельных участков металла ЗТВ сварного соединения аустенитных сталей по той же причине больше и, по данным В. Н. Земзина, может достигать при растяжении 5—10 %. Повышенная возможность деформации в сварном соединении связана не только с более низким пределом текучести аустенитных сталей, но и с более высоким уровнем временных напряжений, обусловливаемых их пониженной теплопроводностью. 10*275
Карта
|
|