Сварные конструкции. Прочность сварных соединений и деформации конструкций






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Сварные конструкции. Прочность сварных соединений и деформации конструкций

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 85 86 87 88 89 90 91... 136 137 138
 

ских деформаций металла при сварке и, как показывают опыты, в некоторых случаях при определении Кс представляет собой более опасный надрез, чем усталостная трещина. В тех случаях, когда оценивается сопротивляемость металла шва разрушению в условиях пониженных температур, испытания шва проводят с натуральным концентратором в виде непровара и при вычислении Кс по результатам испытаний принимают его в виде трещины. Заранее бывает трудно сказать, какие участки зоны термического влияния обладают минимальной сопротивляемостью хрупкому разрушению. Надрезы располагают с небольшим шагом, чтобы проследить изменение свойств металла в зависимости от уровня максимальной температуры при сварке. Обычно исследуют ряд сечений от линии сплавления до зон с температурой нагрева 200—250 °С. Вторая особенность определения хладостойкости сварных соединений состоит в оптимизации условий сварки. Ориентируясь на наименее хладостойкую зону, варьируют режимы сварки, чаще всего погонную энергию, добиваясь наилучших показателей по ударной вязкости. Существуют методы испытаний, использующие образцы, по форме и размерам близкие к натуральным сварным соединениям или даже узлам. Они позволяют оценить агрегатную сопротивляемость соединения или сварного узла. При испытании таких образцов определяют вторую критическую температуру ГКр2, при которой (тсрф = оол. Следует заметить, что в лабораторных условиях сварные узлы обычно дают более низкие критические температуры из-за малого числа испытываемых образцов. Рассеяние свойств металлов, режимов сварки, форм концентраторов, а главное, их радиусов приводит на практике к тому, что отдельные экземпляры изделий имеют более высокую критическую температуру хрупкости. Чтобы выявить свойства сварных узлов при температуре выше 7КР2, определяют пластичность как при низких, так и при более высоких температурах. Значения температуры, при которых регистрируются стабильные высокие результаты по пластичности, обеспечивают максимально возможные механические свойства. При наличии отдельных выпадов низкой пластичности данная температура не может рассматриваться как исключающая хрупкие разрушения. Расчетную оценку допустимости трещин при эксплуатации сварных конструкций проводят, ориентируясь на кривую минимальных значений Kic как функции температуры. Характер кривой К\с по виду сходен с кривой аа на рис. 5.4. В § 11 гл. 3 был изложен метод расчета, в котором использовалась кривая Кс в зависимости от длины трещины. При использовании в расчетах К\с, поскольку его значение не зависит от длины трещины, находят предельно допустимую минимальную температуру, при которой еше выполняются все требования прочности при различных коэффициентах запаса. § 4. Примеры хрупких разрушений и методы повышения хладостойкости сварных соединений Практика изготовления и эксплуатации сварных конструкций располагает, к сожалению, большим числом примеров разрушений из-за концентраторов в местах, где сварка вызывала заметные изменения свойств металла. На рис. 5.11 представлены примеры неудовлетворительного или неудачного проектирования и изготовления сварных соединений, которые явились очагами разрушений при низких температурах. На рис. 5.11, а—г показаны элементы, которые перед сваркой не были соединены между собой. Элементы на ¿i .........'""i.............. А-А д. д-д I .111.1.1 |.!11.М1!ПЧ1| .""illllllillllHIHII ;....... Г iiiiiiiiini.jr а) в) /Н Г 4^ 1 ,г J L ? Г 1 1. Ж) р 1 ч J Рис. 5.11. Примеры разрушений в сварных конструкциях рис. 5.11, д—ж были предварительно сварены, но имели непровар, от которого распространилась трещина. Стыковое соединение на рис. 5.11, к имело непровар в корне шва. На рис. 5.11, з окно, образованное газовой резкой, имело острый угол, на рис. 5.11, и процесс сварки остановлен на листе, в результате чего произошел надрез от подплавления и от него возникла трещина; на рис. 5.11, л электрошлаковый шов 1 заварен последним в жестком контуре; на рис. 5.11, м шов 3 пересекал листовой элемент 1, в котором было расслоение металла 4. От расслоения возникла трещина в. шве и зоне растягивающих напряжений листа 2. Трещины на рис. 5.11 показаны волнистыми линиями. Методы повышения хладостойкости сварных соединений и конструкций состоят в следующем. Используются такие сварочные ма
rss
Карта
 






Страницы: 1 2 3... 85 86 87 88 89 90 91... 136 137 138

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Физико-химические процессы при пайке
Сварка, резка, пайка металлов
Сварка и резка металлов
Сварные конструкции. Прочность сварных соединений и деформации конструкций
Триботехника (износ и безызносность)
Справочник по сварке цветных металлов
Немецко-русский словарь по сварке

rss
Карта