Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Книга 1






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Книга 1

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3... 28 29 30 31 32 33 34... 190 191 192
 

материалов для рабочих лопаток промышленных турбин включают только те, которые достаточно активно сопротивляются коррозии или могут быть успешно использованы в сочетании с подходящими антикоррозионными покрытиями. Применительно к авиадвигателям аналогичное внимание уделяют окислительным процессам. Таким образом, материал рабочих лопаток турбин должен надежно сопротивляться коррозии и окислению или для его защиты должно существовать надежное покрытие. Требуются достаточно высокие сопротивления усталости и ползучести, активному растяжению (предел прочности), вязкость. В настоящее время необходимы и хорошие литейные свойства. Возможность локальной обработки резанием к числу обязательных требований не относится, поскольку ее задачи успешно решают посредством шлифования, электрохимического или электроэрозионного воздействия. Турбинные диски На турбинные диски, к которым доветалевым замком прикреплены рабочие лопатки, действуют радиальные центробежные растягивающие усилия. В результате вращения диска они возникают в его теле и непосредственно, и путем передачи от лопаток. Дополнительные напряжения создаются из-за постоянно существующих колебаний температуры диска. Температурный режим последнего определяется действием охлаждающего воздуха и воздуха, движущегося в потоке рабочих газов, а также любыми утечками рабочего потока в пространство над и под дисковым ободом. В практических условиях температура диска близка, и если выше, то ненамного, к температуре на выходе компрессора. Поэтому для дисков выбирают в основном материалы, способные работать при температурах до 670 °С. В промышленных турбинах для этих целей обычно применяют легированные стали, а в авиадвигателяхсплавы типа IN-718. Катастрофический множественный разрыв диска приводит к выбросу его кусков из турбины с высокими скоростями. Поэтому не допустить такого разрыва — первейшая задача конструкторов турбинного ротора. Подобное разрушение наступало, когда скорости вращения ротора превышали критический предел и средние окружные напряжения приближались 62 к пределу прочности. (Испытания показывают, что уровень средних окружных напряжений, достаточный для вязкого разрушения диска, ниже 0,9 св.) Во многих случаях разрушение турбинных дисков оказывалось хрупким. Следовательно, в список основных требований к материалу диска включается достаточно высокая вязкость разрушения, малая скорость роста трещин, возможность инспектировать состояние диска. Чтобы свести к минимуму совокупные термические напряжения, желательно добиваться низкого коэффициента термического расширения. 2.3. Модели поведения материалов Инженер-конструктор создает продукцию двух видов: проект деталей и узлов, представленный чертежами и описательными ведомостями, и прогнозную оценку (расчет) их надежности и работоспособности. Именно второй вид продукции требует самых больших усилий и наиболее активного сотрудничества с разработчиками материалов. Предметом рассмотрения в данном случае является такой аспект работоспособности деталей, как рабочая долговечность. Чтобы предсказать ее, инженер должен определить напряжения, температуру, химический состав рабочей среды и характеристики поведения материала. Для этого он может воспользоваться собственными расчетами, проведением испытаний или консультацией специалистов. Чтобы описать поведение, можно использовать характеристики как связанные, так и не связанные с разрушением. К последней группе характеристик относятся такие свойства, как модули нормальной упругости и сдвига, коэффициент Пуассона, коэффициент линейного расширения, теплопроводность, излучательная способность, плотность. Они нужны для расчета напряжений, деформаций и температур. В числе связанных с разрушением рассматривают коррозионные свойства, характеристики ползучести и длительной прочности, диаграммы многои малоцикловой усталости, характеристики вязкости разрушения, текучести и предела прочности. Совместное рассмотрение всех этих характеристик приводит к выводу, что механизмы разрушения (в их зависимости от температуры и числа циклов нагружения) представляют наибольший интерес для конструкторов камеры сгорания, а также рабочих и направляющих лопаток.
rss
Карта
 






Страницы: 1 2 3... 28 29 30 31 32 33 34... 190 191 192

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Сварка и свариваемые материалы: В 3-х т. Т. 1. Свариваемость материалов. Справ. изд.
Двойные и тройные карбидные и нитридные системы переходных металлов: Справ, изд.
Новые процессы получения металла (металлургия железа)
Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Книга 1
Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Книга 2
Сплавы с эффектом памяти формы
Справочник молодого термиста

rss
Карта