Электрохимическая обработка металлов: Учеб. для СПТУ






Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу Электрохимическая обработка металлов: Учеб. для СПТУ

Если Вы являетесь автором данной книги и её распространение ущемляет Ваши авторские права или если Вы хотите внести изменения в данный документ или опубликовать новую книгу свяжитесь с нами по по .



Страницы: 1 2 3 4 5... 89 90 91 92
 

1. ОСНОВНЫЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКЕ 1.1. Основы процессов ЭХО Явление анодного растворения. Электрохимическая обработка металлов основана на способности их растворяться в результате оксидных реакций, происходящих в среде электропроводного раствора — электролита — под действием на него постоянного электрического тока. Такой химический процесс растворения металлов называют электролизом. Электролиз протекает при наличии источника питания электрическим током, электролита и двух металлических проводников, называемых электродами, каждый из которых находится в электролитической ванне с электролитом. В электролите свободными электрическими зарядами являются ионы, образующиеся при растворении, например в воде солей, кислот или щелочей. Молекулы таких веществ, взаимодействуя с молекулами растворителя — воды, распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. При этом движение ионов в электролите неупорядоченное. Под действием электрического поля, создаваемого источником литания, между электродом, соединенным с положительным полюсом и называемым анодом, и электродом-катодом, соединенным с отрицательным полюсом, возникает направленное движение ионов — отрицательно заряженные ионы (анионы) движутся к аноду, а положительно заряженные ионы (катионы) —к катоду. В электролите, таким образом, возникает электрический ток, представляющий упорядоченное движение положительно и отрицательно заряженных ионов. Схема движения ионов в наиболее часто применяемом для ЭХО электролите — водном растворе хлористого натрия NaCl — приведена на рис. 1.1. При растворении хлористого натрия в воде его молекула распадается на катион натрия Na+ и анион хлора С1~. Вода НгО при этом также частично диссоциирует на катионы водорода Н+ и анноны гидроксила 0Н~. При подаче на электроды напряжения от источника питания анионы гидроксила и катионы водорода вместе с анионами хлора и катионами натрия вынуждены под действием сил электрического поля перемещаться соответственно к катоду и аноду. Атомы поверхностного слоя электрода-анода /, получая от движущихся к не Рис. 1.1. Схема электролиза: / — электрод-аиод. 2 — электролит. 3 — электрод-катод, 4 — источник питания му анионов хлора и гидроксила дополнительные отрицательные заряды, превращаются в положительные ионы железа. Последние под действием сложных катодных и анодных реакций взаимодействуют с ионами гидроксила и образуют гидрат оксида железа Ре(ОН)з, который в виде нерастворимого химического соединения выпадает в осадок. Таким образом происходит электрохимическое анодное растворение железа. Одновременно с этим на катоде выделяется водород, выходящий из электролита в виде пузырьков. Реакции, протекающие на катоде, как правило, не разрушают его, т. е, катод при ЭХО не изнашивается. Параметры анодного растворения. Из приведенной на рис. 1.1 схемы видно, что электролиз протекает в межэлектродном промежутке (МЭИ), под которым принято понимать пространство между поверхностями катода и анода. Следовательно, электрохимическое анодное растворение происходит без непосредственного механического контакта поверхностей катода и анода. В соответствии с объединенным законом Фарадея объем V (смз) растворенного металла при электролизе прямо пропорционален объемному электрохимическому эквиваленту Kv данного металла, силе тока / и времени x:V = KvIr. Объемный электрохимический эквивалент Kv металла зависит от его валентности и атомной массы; эти величины для определенного металла (табл. 1.1) имеют постоянные значения. На практике объем растворенного металла не всегда соответствует объему, рассчитанному по этой формуле. При опреде -ленном сочетании параметров процесса (плотности тока i на аноде, определяемой отношением силы тока / к площади анода S, вида обрабатываемого металла, состава и скорости обновления электролита в межэлектродном промежутке) объем растворенного металла относительно расчетного его значения может уменьшаться, а в некоторых случаях процесс анодного растворения полностью прекращается. Это объясняется образованием на поверхностях анода труднорастворимых оксидных пленок.
rss
Карта
 






Страницы: 1 2 3 4 5... 89 90 91 92

Внимание! эта страница распознана автоматически, поэтому мы не гарантируем, что она не содержит ошибок. Для того, чтобы увидеть оригинал, Вам необходимо скачать книгу


Спеціальні способи зварювання: Навчальний посібник
Плазмотроны: конструкции, характеристики, расчет
Волочильщик проволоки. Учеб. пособие для СПТУ
Электрохимическая обработка металлов: Учеб. для СПТУ
Плазменное упрочнение и напыление
Разрезка материалов
Резание металлов: Учебник для машиностр. и приборостр. спец. вузов

rss
Карта